

deserialize

A library to make deserialization easy. To get started, just run pip install deserialize

How it used to be

Without the library, if you want to convert:

{
 "a": 1,
 "b": 2
}

into a dedicated class, you had to do something like this:

class MyThing:

 def __init__(self, a, b):
 self.a = a
 self.b = b

 @staticmethod
 def from_json(json_data):
 a_value = json_data.get("a")
 b_value = json_data.get("b")

 if a_value is None:
 raise Exception("'a' was None")
 elif b_value is None:
 raise Exception("'b' was None")
 elif type(a_value) != int:
 raise Exception("'a' was not an int")
 elif type(b_value) != int:
 raise Exception("'b' was not an int")

 return MyThing(a_value, b_value)

my_instance = MyThing.from_json(json_data)

How it is now

With deserialize all you need to do is this:

import deserialize

class MyThing:
 a: int
 b: int

my_instance = deserialize.deserialize(MyThing, json_data)

That’s it. It will pull out all the data and set it for you type checking and even checking for null values.

If you want null values to be allowed though, that’s easy too:

from typing import Optional

class MyThing:
 a: Optional[int]
 b: Optional[int]

Now None is a valid value for these.

Types can be nested as deep as you like. For example, this is perfectly valid:

class Actor:
 name: str
 age: int

class Episode:
 title: str
 identifier: st
 actors: List[Actor]

class Season:
 episodes: List[Episode]
 completed: bool

class TVShow:
 seasons: List[Season]
 creator: str

Contents:

	Custom Keys

	Unhandled Fields

	Ignored Keys

	Parsers

	Subclassing

	Raw Storage

	Default Values

	Post-processing

	Default Values

	Post-processing

	Downcasting

Indices and tables

	Index

	Module Index

	Search Page

Custom Keys

It may be that you want to name your properties in your object something different to what is in the data. This can be for readability reasons, or because you have to (such as if your data item is named __class__). This can be handled too. Simply use the key annotation as follows:

@deserialize.key("identifier", "id")
class MyClass:
 value: int
 identifier: str

This will now assign the data with the key id to the field identifier. You can have multiple annotations to override multiple keys.

Unhandled Fields

Usually, if you don’t specify the field in your definition, but it does exist in the data, you just want to ignore it. Sometimes however, you want to know if there is extra data. In this case, when calling deserialize(…) you can set throw_on_unhandled=True and it will raise an exception if any fields in the data are unhandled.

Additionally, sometimes you want this, but know of a particular field that can be ignored. You can mark these as allowed to be unhandled with the decorator @allow_unhandled(“key_name”).

Ignored Keys

You may want some properties in your object that aren’t loaded from disk, but instead created some other way. To do this, use the ignore decorator. Here’s an example:

@deserialize.ignore("identifier")
class MyClass:
 value: int
 identifier: str

When deserializing, the library will now ignore the identifier property.

Parsers

Sometimes you’ll want something in your object in a format that the data isn’t in. For example, if you get the data:

{
 "successful": True,
 "timestamp": 1543770752
}

You may want that to be represented as:

class Result:
 successful: bool
 timestamp: datetime.datetime

By default, it will fail on this deserialization as the value in the data is not a timestamp. To correct this, use the parser decorator to tell it a function to use to parse the data. E.g.

@deserialize.parser("timestamp", datetime.datetime.fromtimestamp)
class Result:
 successful: bool
 timestamp: datetime.datetime

This will now detect when handling the data for the _key_ timestamp and run it through the parser function supplied before assigning it to your new class instance.

The parser is run _before_ type checking is done. This means that if you had something like Optional[datetime.datetime], you should ensure your parser can handle the value being None. Your parser will obviously need to return the type that you have declared on the property in order to work.

Subclassing

Subclassing is supported. If you have a type Shape for example, which has a subclass Rectangle, any properties on Shape are supported if you try and decode some data into a `rectangle object.

Raw Storage

It can sometimes be useful to keep a reference to the raw data that was used to construct an object. To do this, simply set the raw_storage_mode paramater to RawStorageMode.ROOT or RawStorageMode.ALL. This will store the data in a parameter named __deserialize_raw__ on the root object, or on all objects in the tree respectively.

Default Values

Some data will come to you with fields missing. In these cases, a default is often known. To do this, simply decorate your class like this:

@deserialize.default("value", 0)
class IntResult:
 successful: bool
 value: int

If you pass in data like {“successful”: True} this will deserialize to a default value of 0 for value. Note, that this would not deserialize since value is not optional: {“successful”: True, “value”: None}.

Post-processing

Not everything can be set on your data straight away. Some things need to be figured out afterwards. For this you need to do some post-processing. The easiest way to do this is through the @constructed decorator. This decorator takes a function which will be called whenever a new instance is constructed with that instance as an argument. Here’s an example which converts polar coordinates from using degrees to radians:

data = {
 "angle": 180.0,
 "magnitude": 42.0
}

def convert_to_radians(instance):
 instance.angle = instance.angle * math.pi / 180

@deserialize.constructed(convert_to_radians)
class PolarCoordinate:
 angle: float
 magnitude: float

pc = deserialize.deserialize(PolarCoordinate, data)

print(pc.angle, pc.magnitude)

>>> 3.141592653589793 42.0

Default Values

Some data will come to you with fields missing. In these cases, a default is often known. To do this, simply decorate your class like this:

@deserialize.default("value", 0)
class IntResult:
 successful: bool
 value: int

If you pass in data like {“successful”: True} this will deserialize to a default value of 0 for value. Note, that this would not deserialize since value is not optional: {“successful”: True, “value”: None}.

Post-processing

Not everything can be set on your data straight away. Some things need to be figured out afterwards. For this you need to do some post-processing. The easiest way to do this is through the @constructed decorator. This decorator takes a function which will be called whenever a new instance is constructed with that instance as an argument. Here’s an example which converts polar coordinates from using degrees to radians:

data = {
 "angle": 180.0,
 "magnitude": 42.0
}

def convert_to_radians(instance):
 instance.angle = instance.angle * math.pi / 180

@deserialize.constructed(convert_to_radians)
class PolarCoordinate:
 angle: float
 magnitude: float

pc = deserialize.deserialize(PolarCoordinate, data)

print(pc.angle, pc.magnitude)

>>> 3.141592653589793 42.0

Downcasting

Data often comes in the form of having the type as a field in the data. This can be difficult to parse. For example:

data = [
 {
 "data_type": "foo",
 "foo_prop": "Hello World",
 },
 {
 "data_type": "bar",
 "bar_prop": "Goodbye World",
 }
]

Since the fields differ between the two, there’s no good way of parsing this data. You could use optional fields on some base class, try multiple deserializations until you find the right one, or do the deserialization based on a mapping you build of the data_type field. None of those solutions are elegant though, and all have issues if the types are nested. Instead, you can use the downcast_field and downcast_identifier decorators.

downcast_field is specified on a base class and gives the name of the field that contains the type information. downcast_identifier takes in a base class and an identifier (which should be one of the possible values of the downcast_field from the base class). Internally, when a class with a downcast field is detected, the field will be extacted, and a subclass with a matching identifier will be searched for. If no such class exists, an UndefinedDowncastException will be thrown.

Here’s an example which would handle the above data:

@deserialize.downcast_field("data_type")
class MyBase:
 type_name: str

@deserialize.downcast_identifier(MyBase, "foo")
class Foo(MyBase):
 foo_prop: str

@deserialize.downcast_identifier(MyBase, "bar")
class Bar(MyBase):
 bar_prop: str

result = deserialize.deserialize(List[MyBase], data)

Here, result[0] will be an instance of Foo and result[1] will be an instance of Bar.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 deserialize

 		
 Custom Keys

 		
 Unhandled Fields

 		
 Ignored Keys

 		
 Parsers

 		
 Subclassing

 		
 Raw Storage

 		
 Default Values

 		
 Post-processing

 		
 Default Values

 		
 Post-processing

 		
 Downcasting

_static/up-pressed.png

_static/up.png

_static/plus.png

